A Robust Model Predictive Control Approach for Underwater Robotic Vehicles Operating in a Constrained workspace

نویسندگان

  • Shahab Heshmati-Alamdari
  • George C. Karras
  • Panos Marantos
  • Kostas J. Kyriakopoulos
چکیده

This paper presents a novel Nonlinear Model Predictive Control (NMPC) scheme for underwater robotic vehicles operating in a constrained workspace including static obstacles. The purpose of the controller is to guide the vehicle towards specific way points with guaranteed input and state constraints (i.e obstacle avoidance, workspace boundaries). The proposed scheme incorporates the full dynamics of the vehicle in which the ocean currents are also involved. Hence, the control inputs calculated by the proposed scheme are formulated in a way that the vehicle will exploit the ocean currents, when these are in favor of the way-point tracking mission which results in reduced energy consumption by the thrusters. The closed-loop system has analytically guaranteed stability and convergence properties. The performance of the proposed control strategy is experimentally verified using a 4 Degrees of Freedom (DoF) underwater robotic vehicle inside a constrained test tank with obstacles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Robust Control for Trajectory Tracking of Autonomous underwater Vehicles on Horizontal Plane

This manuscript addresses trajectory tracking problem of autonomous underwater vehicles (AUVs) on the horizontal plane. Adaptive sliding mode control is employed in order to achieve a robust behavior against some uncertainty and ocean current disturbances, assuming that disturbance and its derivative are bounded by unknown boundary levels. The proposed approach is based on a dual layer adaptive...

متن کامل

Gravity-Compensated Robust Control for Micro-Macro Space Manipulators During a Rest to Rest Maneuver

Many space applications require robotic manipulators which have large workspace and are capable of precise motion. Micro-macro manipulators are considered as the best solution to this demand. Such systems consist of a long flexible arm and a short rigid arm. Kinematic redundancy and presence of unactuated flexible degrees of freedom, makes it difficult to control micro-macro manipulators. This ...

متن کامل

Constrained Model Predictive Control of Low-power Industrial Gas Turbine

Nowadays, extensive research has been conducted for gas turbine engines control due to growing importance of gas turbine engines for different industries and the need to design a suitable control system for a gas turbine as the heart of the industry. In order to design gas turbine control system, various control variables can be used, but in the meantime, fuel flow inserting into combustion cha...

متن کامل

Designing a Robust Control Scheme for Robotic Systems with an Adaptive Observer

This paper introduces a robust task-space control scheme for a robotic system with an adaptive observer. The proposed approach does not require the availability of the system states and an adaptive observer is developed to estimate the state variables. These estimated states are then used in the control scheme. First, the dynamic model of a robot is derived. Next, an observer-based robust contr...

متن کامل

Modelling and Compensation of uncertain time-delays in networked control systems with plant uncertainty using an Improved RMPC Method

Control systems with digital communication between sensors, controllers and actuators are called as Networked Control Systems (NCSs). In general, NCSs encounter with some problems such as packet dropouts and network induced delays. When plant uncertainty is added to the aforementioned problems, the design of the robust controller that is able to guarantee the stability, becomes more complex. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1709.04940  شماره 

صفحات  -

تاریخ انتشار 2017